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ABSTRACT

We develop estimates for the parameters of the Dirichlet-multinomial

distribution (DMD) when there is insufficient data to obtain maximum like-

lihood or method of moment estimates known in the literature. We do,
however, have supplemetary beta-binomial data pertaining to the marginals

of the DMD, and use these data when estimating the DMD parameters. A

real situation and data set are given where our estimates are applicable.

1. INTRODUCTION

Suppose we have t + 1 mutually exclusive events and Y is the number

of times that event j occurs out of k independent trials, j = 0, 1,..., t. Let

f, conditional on the vector of probabilities I1 = V, have a multinomial

distribution, i.e., ?I1fi = (Y0,...,Yt)Ifl = i - multinomial(k,iro,...,irt).

4, Let rI have a Dirichlet distribution; then compounding the multinomial

distribution with the Dirichlet gives the so-called Dirichlet (or P-) com-

pound multinomial distribution (Johnson and Kotz 1969), also known as

the compound multinomial distribution (Mosimann 1962). It is commonly

known as the Dirichlet-multinomial distribution, denoted by DMD(k,r,X),

> 0, ,j > 0, j =0,1,...,t, Ejo = 1.



An excellent literature review of the parameter estimation and appli-

cations of the DMD was given by Chuang and Cox (1985), although they

did not mention the application of the DMD to magazine and TV exposure

data (Chandon 1976; Leckenby and Kishi 1984; Rust and Leone 1984), an

application we will give in Section 4.

The DMD mass function is

k! qr r~k- F,'=, yy + rAo)
fDM( )(k - ,)! r(r + k) r(ro)

t r(y. + r>\j)

II r(rA,)y! , o < y < k, i= 1,...,t, EY- k,
q j==1 =1 (1.1)

where rF(1) = (1 - 1)I(1 - 1), the usual gamma function.

To fix ideas we will set t = 3. The data needed to estimate A , j =

0,1,2,3 is (nio, nil,ni2,ni 3 ), i = 1,...,n, where nil is the number of oc-

curences of event j for the ith person and n is the sample size ( =0 nii =

k, V i). Denote the total number of people in the sample who fall into

category j as n.i = i=l nil"

Chuang and Cox (1985) estimated A with

,\ - k (1.2)

where n.i = n.i/n. We still need to find an estimate of r, for which we now

give four different estimates which have appeared in the literature.

Mosimann (1962) showed that the covariance matrix of ft (denoted Ef

) and the covariance matrix of Y (denoted E?) are related thus,

E + r (1.3)

He suggested estimating Ef with Fii,(k - ft.i)/k on the diagonal and

-n.jn.i,/k ,j $ j', on the off-diagonal and estimating EV with -= , (ni. -
Fl.i)2/ (n - 1) on the diagonal and j=F(ny - ft )(r.ii,- fl.)/(n - 1) on

the off- diagonal. Notice that E?, and Eff are nonsingular 3 x 3 matrices

(Mosimann 1962). Then, using (1.3),

1 + det(tf)}
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from which f can be obtained.

Brier's (1980) estimate of r similarly comes from solving for f in the

following equation

k+_ 1 n (niy- ffj)2

i 1+f 3(n - 1) i=1 "=0 n.j

Both Mosimann's and Brier's estimates are based on the method of moments

estimation technique. Owing to the form of Brier's estimate Chuang and Cox

(1985) called it a chi-square moment estimate.
The likelihood equations used to find Ai and f are

1I+l+ 1 j 1,2,3,

i--- =0 i=1 1=0

3

A0 = 1- E x (1.4)
j--I

":'"~ 3 +i -1 i =

:-I j=O 1=0 --0

Due to the numerical difficulties of obtaining a solution to the likelihood

equations of (1.4) Chuang and Cox (1985) estimated r using the pseudo

maximum likelihood method of Gong and Sameniego (1981). Chuang and

Cox's method is to substitute the 1i of (1.2) into (1.1) then obtain the

likelihood equation which involves just the parameter r. Their likelihood

equation is
n 3 n, -I k-IEE E n

n j 1
3i= j=O 1=0 i=0

However, if k = 1, we can use neither Mosimann's nor Brier's estimate of

r since (k + r)/(1 + r) is 1 when k = 1. In addition, the maximum likelihood

and pseudo maximum likelihood methods do not give unique solutions when

k = 1 as there are only three linearly independent data and four parameters

to estimate. It is precisely when k = I that we desire to estimate r. A reason

for this will be apparent in Section 4.

2. ESTIMATING r WHEN k = 1

- Let X, = YI + Y 3 and X2 = Y2 + Y3 ; then (XI,X 2 ) is the bivariate

distribution of the total number of occurences of events I and 3 and events 2

3



and 3, respectively. The marginal distribution of each of the Y is the beta-

binomial distribution (BBD) denoted by BBD(k,rAi, r(1 -Ai)), whose mass

function is obtained by letting t = 1 in (1.1).

An application of some general DMD theorems in Basu and de B. Pereira

(1982) shows that

X, - BBD(k,r(A, + As),r(Ao + A2)),

X2 - BBD(k,r(A 2 + As),r(Ao + Al)).

The joint mass function of X, and X2 is

9(X X1 X = 2) k!r(r) min(z1z2)

r(r+k) E
z&=maz(O,z1+z2 -k)

rNXI- X3 + TAIM(X2 - X3 + rA 2 )r(z 3 + rAs)r(k + z 3 - X1 - X2 + rl\o)

(XI - X3)!(z 2 - z3)!X3 !(k + x3 - X )! 'H=o r(r 1 )
(2.2)

0o < z, < k, i = 1,2.

* .::- We saw in Section 1 that to estimate r when k = 1 we need some extra

data. From (2.1), X, - BBD(k,r(A1 + A3 ),r(Ao + A2)) so we can estimate

r(A I + A3 ) and r(Ao + A2 ) using supplementary data pertaining to X 1 , if such

data is available; similarly for X 2 . Define a, and fli, i = 1,2, as follows;

T(Al + A3) = a, , r(Ao + A2) = 1 , (2.3)

7(A\2 +A 3 ) =U2 , T(Ao +i) = #2 .

From (2.3), ai+ i = r(Ao+Ai+A +As) = T, i = 1,2. This means that

when a, and13, are estimated using supplementary BBD data the estimates

should be constrained so that

a + 01 = a 2 + 0 2 =. (2.4)

The problem with trying to use constrant (2.4) is that r is unknown. Chan-

don (1976) could not, so did not, apply constraint (2.4) when estimating

a and I3,. As a result, &1 + 41 # &2 + 12 where &, and 4i are MLEs or

method of moment estimates obtained by using supplementary BBD data

for Xj, i = 1,2. Knowing this, he took a weighted average of &1 +,31 and

&2 + 2 to estimate r with

2

fe =L( 1 ±+13) ,Wi where to, = - , 1,2. (2.5)
i=1

4



We found this unappealing since this estimator of r is rather ad hoc. He

could equally well have chosen the arithmetic, geometric, or harmonic mean
of (&j + j ) i = 1, 2.

Our procedure is as follows. Denote the correlation between X, and X 2

as pxl,x2 . Then (2.3) substituted into Px1 ,x 2 gives

AoAs - AIA 2Px,.x2 = (AA + A3 )(Ao + A2)(A2 + A3)(A0 + A1) (2.6)

2 (AoA3 - A1A2 )
-,/a-1)31a2 02

Solving for r in (2.6) gives

or = ((A+ ( a A2  ))(2.7)
S((Al + 13)(Ao + A2)(A2 + A3)(A0 + Aj)

*From (2.3) it follows that

AI + A3 - a Ao + A2 /
S+al+1

A2 + A3  2 Ao + A(
a2 '+02  a2 + 2

Substituting the four equations of (2.8) into (2.7) gives

r = V(al + 01)(a2 + 32) - (2.9)

The above construction shows that it is more reasonable to estimate r with

the geometric mean of &j + P,, i.e., 0& = (& + ^1)(&2 + /32), rather than

the weighted average estimate, f.

3. ASYMPTOTIC PROPERTIES OF f

If ai and #j are estimated with consistent estimates then, as n --4 oo,

a + a 2

ai+fli a3+P2=

which equals r if[ (2.4) holds. On the other hand, ng - r iff (2.9) holds.

Since (2.4)=*(2.9), but the converse is not true, rg.. is consistent under a

"V weaker assumption than that required to make f, consistent.

S 5
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We can compare the asymptotic relative efficiency (ARE) of f, and

fg,, by examining the ratio of their asymptotic variances. Define ARE =

AV(f,)/AV(.,.) where AV(.) denotes asymptotic variance. The AV of the

two competing estimates can be obtained from knowledge of the asymptotic
joint distribution of (&1,t, &2,32) and use of the delta method.

If the &i's and ks are MLEs then the asymptotic joint distribution can

be obtained from the from general MLE theory (Lehmann 1983), i.e.,

v(- ,MN0( ,as - oo (3.1)

where B' - (al,0 1 ,a 2 ,3 2 ) and 1(61 is the information matrix. Danaher

(1987) proved that the regularity conditions for (3.1) to be true are satisfied

for the MLEs of the BBD parameters.
Denote the information matrix of (ai,li) as I(czi 3 ), and the mass

function of Xi - BBD(k, ai,f3) as fBBD, i= 1,2. Then

Fk

zi= A~i~x ) BD _ - (Cti+ f,k) ,-A(cti+ #3,k)" XillXi=

_ A(a,,+ j,,k) , A (f,, k_ )fBD_ (a, + i,k)

i-.°

where A 1(- ) -y +j) 2 .
If it is assumed that the bivariate distribution (&JI) is independent

of (&2,052) then

I~) = [I(ai1101) 
0

0 I(a2, 032)]

To ensure that Lehmann's (1983, p345) definition of asymptotic relative

efficiency is well defined, we must assume that (2.4) is true when comparing

the asymptotic variances of f, and fg,,. Use of the delta method and (2.4)

gives
.. ~ARE 1 'I(8g/£,I-(0) g,,)

where :i' a , 0,!1,a2,2 ) and xg,, = (1,1,1,1).

Clearly, when al = a 2 the ARE = 1. Some AREs for selected a i 's and

,3i's are given in Table I. The table shows that the ARE is greater than one

for three of the four cases considered. An interesting observation is that for

given a1 and Pi the ARE does not vary much with k. Due to the compexity

.,6



Table I: ARE comparison of f, and Tg,m for some as's and #i's.

a and f3i
a=1/3 1 =2 a 1 =0.53 1 =1 a 1.=0.1#31 =0.4 a 1 =10 t1 =5

k a 2 =2# 2 =1 a 2 =0.2# 2 =1.3 a 2 =0.3# 2 =0.3 a 2 =30 2 =12

2 1.11 0.93 1.02 1.24
4 1.11 0.92 1.01 1.24
8 1.11 0.91 1.01 1.24

of the information matrix the author was unable to find conditions on ai and

Pi under which ARE > 1. Hence, to check the conjecture that ARE > 1

most of the time, two hundred randomly chosen ai's and #i's were selected

to conform to (2.4) and the ARE calculated. Some 144/200 =72% of the

cases had ARE > 1. Hence fg,m is asymptotically more efficient than f for
*-"- approximately three-quarters of the possible ai and /3l which satisfy (2.4).

4. APPLICATIONS

V. Suppose an advertiser is about to launch an advertising campaign by

placing k ads in each of two different magazines. To evaluate the effectiveness

of the campaign the advertiser would like to estimate the proportion of the

population which sees at least one of the ads (known as the reach). We say

that a person is exposed to an ad when he or she sees the ad. Let Y, = the

number of exposures exclusive to magazine 1, Y2 = the number of exposures

exclusive to magazine 2, and Y3 = the number of exposures to both magazines

1 and 2, for a particular person with 0 < Y < k , i = 1,2,3. Then Xi, as

defined in Section 2, is the number of exposures a person has to magazine

""i, i= 1,2. Chandon (1976) modelled Y with the DMD and the exposure

distribution for a single magazine (Xi here) was first modelled with the BBD

by Metheringham (1964). The DMD has also been used to model combined

TV and magazine exposure data (Rust and Leone 1984).

In the media survey we used for our data two questions were asked of

the respondents (for weekly magazines);

Q1) "Have you personally read or looked into any issue of ... (magazine

name) in the last seven days - it doesn't matter where?" (Has a Y/N answer).

7



Q2) "How many different issues of ... (magazine name), if any, do you

personally read or look into in an average month - it doesn't matter where?"

(Has answer 0,1,2,3,4 issues).

The wording of Q1 and Q2 are modified appropriately for two-weekly,

monthly and two-monthly magazines. These questions were asked for forty

different magazines.

An implicit assumption in the magazine advertising field is that a person

who reads a magazine is exposed to all the advertisements in that magazine.

This is unlikely to be true for people who meet the criterion of "read" in

Q1 and Q2. However it is usually impractical to ask respondents which

advertisements they have been exposed to so we cannot avoid making this

assumption for the available data.

There are many media schedules an advertising agency can specify whose

exposure distribution cannot be directly estimated from Q1 and Q2. For

example, a schedule with 3 ads in each of two different magazines cannot

be estimated using Q1 and Q2. We want, therefore, to construct a model

which not only estimates observable exposure distributions accurately but

can be used to estimate (or predict) exposure distributions outside the range

of exposure distributions covered by Q1 and Q2.

The first step in using (1.1) to model the exposure distribution of V is to

estimate the parameters of the DMD. When solving the likelihood equations

we come up against a data problem. The response to Q2 does not tell us

what a person's reading behavior was in a specified week, it only gives us the

total number of issues read in the last four weeks. If a person's response to

* Q2 is "4" then clearly they saw each issue but if their response is a "2" we

have no way of knowing which two issues were read. Hence Q2 cannot give

us the data reqired to fit (1.1). We can, however, use Q1 to fit (1.1) because

here a Yes/No response tells us precisely whether or not a person read the

last issue of a magazine. The problem this time is that k = 1 when using

Q1 to fit the DMD and we saw in Section 1 that the conventional methods

V' for estimating r do not work wken k = 1. We can, therefore, use (2.9) to

estimate r in the following way.

The response to Q1 gives us data (nio,ni1l,ni2 ,ni3), F' nji = 1, nji E

{0, 1} V i. These data can be used to estimate Aj using (1.2). The response

to Q2 gives us data {n,,}, i = 1,2 where n,, is the number of people in the

sample who have xi exposures to magazine i, 0 < xi < 4, i = 1, 2. Hence we

8



Table II: Observed Exposure Distributions and Parameter Estimates for the
New Zealand Listener (NZL) and Time Magazine; n = 5201.

Observed Univariate Exposure Distribution
Exposures 0 1 2 3 4

NZL 2741 322 286 94 1758
Time 4373 301 186 54 287

Bivariate (n.o, n.1, n.2, n.3 ) = (2975,1741,189,296)
Data where n., = Ej nij

Parameter &1 = 0.0743 /3j = 0.1103 fe = 0.2473
Estimates &2 = 0.0498 /42 = 0.4517 fgn = 0.3043

can use {n., } to get estimates of ai and /f in (2.3) by using the method of

moments or maximum likelihood estimation for the BBD.

Once the parameters of (2.2) have been estimated we can estimate (or

predict) the mass function of (XI, X2 ) for values of k other than 1 or 4, the
values available from the data.

In Table II we give the observed univariate and bivariate exposure dis-

tributions for the New Zealand Listener and Time Magazine along with the
p..' MLEs for ai and/3i. Since (2.4) does not hold (even approximately) for the

parameter estimates we cannot use our derived form of the ARE to compare

the asymptotic efficiency of f, and g,.

The exposure distribution of interest to advertisers is not the bivariate

exposure distibution (X1 , X2 ), but rather Xtot = X, + X2 , i.e., the total

number of exposures a person has to the ad campaign. Having estimated the

parameters of (2.2) we obtain an estimate of the probability mass function of

Xto0t by a change of variables. If we denote the mass function of the exposure

distribution as f(Xtot) then reach is 1 - f(Xto = 0). The observed reach is

52.5% while the estimated reachs using g, and f, are, respectively, 53.1%

and 51.5%. Hence use of ., in (2.2) gives a closer estimate of reach than

when f, is used.

To further demonstrate the usefulness of the geometric mean estimate

of - we consider the data from Mosimann (1962). These data are frequencies

of occurrence of different pollen grains made at n = 73 different core levels.

Here the pollen counts totalled 100 at each core, i.e., k = 100 so there

~9



Table III: Six Estimates of r for Mosimann's (1962) pollen data.

Mosimann's Brier's pseudo-MLE MLE fg. f,

81.92 73.21 62.97 60.19 57.76 54.23

is no need to use fgm, as the four methods outlined in Section 1 are all

applicable, with maximum likelihood being the best (Chuang and Cox 1985).

Nonetheless, we will estimate r with fgm to show that it competes admirably

with the four estimates in Section 1.

Let YO =pine, Y =oak, Y2 =alder and Y3 =fir pollen counts (cf. Mosi-

mann (1962) for details of these data).

Table III gives the estimates of r using the four techniques in Section

1 as well as for f.,m and f, when ori and fl, are estimated by maximum
likelihood. The estimate which is closest to the MLE is fgm, even closer to

the MLE than the pseudo-MLE. Chuang and Cox (1985) point out that the

pseudo-MLE is both easier to calculate and asymptotically comparable to the

MLE. Their estimate does require some degree of programming, however, as

do the MLEs of ai and fli used to calculate rom If &, and 4i for f,,, are

estimated by the method of moments the computations required can easily be

conducted on a calculator. Estimating ai and f by the method of moments

for Mosimann's data gives fg, = 56.69. This estimate is still quite close to

the MLE estimate of r in Table III and has the advantage of requiring no

programming whatsoever.
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